1,646 research outputs found

    Food logging: an information literacy perspective

    Get PDF
    Purpose: The aim of the paper is to explore the meaning of information literacy in food logging, the activity of recording food intake and monitoring weight and other health conditions that may be affected by diet, using applications (apps) accessed through mobile devices and personal computers. Design/methodology/approach: Data was gathered from a small group of food logging app users through a focus group and interviews. Analysis was informed by practice theory and the growing interest in information literacy outside educational settings. Findings: Food logging revolves around the epistemic modality of information, but it is the user who creates information and it is not textual. Food logging is associated with a discourse of focussing on data and downplaying the corporeal information associated with eating and its effect on the body. Social information was an important source for choosing an app, but data was rarely shared with others. Food loggers are very concerned with data quality at the point of data entry. They have a strong sense of learning about healthy eating. They were not well informed about the data privacy and access issues. Practical implications: Food loggers need to be better informed about data risks around food logging. Originality/value: This is the first study of food logging from an information literacy perspective

    Numerical simulations of the kappa-mechanism with convection

    Full text link
    A strong coupling between convection and pulsations is known to play a major role in the disappearance of unstable modes close to the red edge of the classical Cepheid instability strip. As mean-field models of time-dependent convection rely on weakly-constrained parameters, we tackle this problem by the means of 2-D Direct Numerical Simulations (DNS) of kappa-mechanism with convection. Using a linear stability analysis, we first determine the physical conditions favourable to the kappa-mechanism to occur inside a purely-radiative layer. Both the instability strips and the nonlinear saturation of unstable modes are then confirmed by the corresponding DNS. We next present the new simulations with convection, where a convective zone and the driving region overlap. The coupling between the convective motions and acoustic modes is then addressed by using projections onto an acoustic subspace.Comment: 5 pages, 6 figures, accepted for publication in Astrophysics and Space Science, HELAS workshop (Rome june 2009

    Introduction to Arithmetic Mirror Symmetry

    Full text link
    We describe how to find period integrals and Picard-Fuchs differential equations for certain one-parameter families of Calabi-Yau manifolds. These families can be seen as varieties over a finite field, in which case we show in an explicit example that the number of points of a generic element can be given in terms of p-adic period integrals. We also discuss several approaches to finding zeta functions of mirror manifolds and their factorizations. These notes are based on lectures given at the Fields Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics

    Application of density functional theory in the synthesis of electroactive polymers

    Get PDF
    A wide range of conjugated organic compounds undergo anodic electropolymerisation to produce polymers of high conductivity. However, electrooxidation does not always result in the formation of electroactive materials, since some reactions produce insulating films or soluble oligomers. Density functional theory (DFT) has been used to predict the outcome of electropolymerisation reactions by calculating the unpaired electron π-spin density distribution of monomeric radical cations, in order to determine coupling positions in the resultant polymers. π-Spin densities calculated for pyrrole, thiophene and (E)-stilbene are found to be in good agreement with experimental values. DFT has been used to investigate the low conductivity and redox inactivity of poly[(E)-3-styrylthiophenes] and poly[(E)-2-styrylheterocycles]. High positive spin densities at the alkene spacer linkage in the corresponding monomeric radical cations were found, suggesting crosslinking of the polymers via the double bond. In contrast, electroactive polymers of improved conductivity are formed from the electropolymerisation of some (Z)-2-α,β-diarylacrylonitriles. For these monomers, DFT calculations show the positions of highest spin density to be located at the α-positions of the heterocyclic rings, suggesting the presence of α,α′-linked monomeric couplings necessary for electroactivity

    Molecular scale contact line hydrodynamics of immiscible flows

    Full text link
    From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrodynamic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading to the breakup of the fluid-fluid interface, is accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with captions, content changed in this resubmissio

    Site-Specific Iron Substitution in STA-28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1, 10-Phenanthrolines as Framework-Bound Templates

    Get PDF
    An AlPO4 zeotype has been prepared using the aromatic diamine 1, 10-phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4N2 environment. Furthermore, using this framework-bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m2 g-1 and two perpendicular sets of channels that intersect to give pore space connected by 12-ring openings along all crystallographic directions

    Uniaxial compression of single crystal and polycrystalline tantalum

    Get PDF
    A series of compression experiments characterising the elastic-plastic response of single crystal and polycrystalline tantalum from quasi-static to intermediate strain-rates (10^−3 – 10^3 s−1) over a range of temperatures (233–438 K) are reported in this paper. The single crystal experiments show significant differences in the response of the three principle crystal orientations of tantalum in terms of yield, work hardening and ultimate deformed shapes. Modelling is undertaken using a dislocation mechanics based crystal plasticity finite element model giving insight into the underlying microscopic processes that govern the macroscopic response. The simulations show the importance of the dislocation mobility relations and laws governing the evolution of the mobile dislocation density for capturing the correct behaviours. The inclusion of the twinning/anti-twinning asymmetry is found to influence [100] orientation most strongly, and is shown to be critical for matching the relative yield strengths. In general the simulations are able to adequately match experimental trends although some specific details such as exact strain hardening evolution are not reproduced suggesting a more complex hardening model is required. 3D finite element simulations approximating the tests are also undertaken and are able to predict the final deformed sample shapes well once the twinning/anti-twinning asymmetry is included (particularly for the [100] orientation). The polycrystalline data in both as-received and cold rolled conditions shows the initial yield strength is highest and work hardening rate is lowest for the cold-rolled material due to the increase in mobile dislocation density caused by the prior work. The general behavioural trends with temperature and strain-rate of the polycrystalline materials are reproduced in the single crystal data however the specific form of stress versus strain curves are significantly different. This is discussed in terms of the similar active slip systems in polycrystalline material to high symmetry single crystals but with the significant added effect of grain boundary interactions

    Atomic and Electronic Structures of Unreconstructed Polar MgO(111) Thin Film on Ag(111)

    Full text link
    Atomic and electronic structures of a polar surface of MgO formed on Ag(111) was investigated by using reflection high energy electron diffraction (RHEED), Auger electron spectroscopy, electron energy loss spectroscopy (EELS), and ultraviolet photoemission spectroscopy (UPS). A rather flat unreconstructed polar MgO(111) 1×\times1 surface could be grown by alternate adsorption of Mg and O2_{2} on Ag(111). The stability of the MgO(111) surface was discussed in terms of interaction between Ag and Mg atoms at the interface, and charge state of the surface atoms. EELS of this surface did not show a band gap region, and finite density of states appeared at the Fermi level in UPS. These results suggest that a polar MgO(111) surface was not an insulating surface but a semiconducting or metallic surface.Comment: 6 figures, to be published in Phys. Rev.

    ISO Spectroscopy of Young Stellar Objects

    Get PDF
    Observations of gas-phase and solid-state species toward young stellar objects (YSOs) with the spectrometers on board the Infrared Space Observatory are reviewed. The excitation and abundances of the atoms and molecules are sensitive to the changing physical conditions during star-formation. In the cold outer envelopes around YSOs, interstellar ices contain a significant fraction of the heavy element abundances, in particular oxygen. Different ice phases can be distinguished, and evidence is found for heating and segregation of the ices in more evolved objects. The inner warm envelopes around YSOs are probed through absorption and emission of gas-phase molecules, including CO, CO_2, CH_4 and H_2O. An overview of the wealth of observations on gas-phase H_2O in star-forming regions is presented. Gas/solid ratios are determined, which provide information on the importance of gas-grain chemistry and high temperature gas-phase reactions. The line ratios of molecules such as H_2, CO and H_2O are powerful probes to constrain the physical parameters of the gas. Together with atomic and ionic lines such as [0 I] 63 µm, [S I] 25 µm and (Si II] 35 µm, they can also be used to distinguish between photon- and shock-heated gas. Finally, spectroscopic data on circumstellar disks around young stars are mentioned. The results are discussed in the context of the physical and chemical evolution of YSOs
    • …
    corecore